Research Inventions  

Laseroptik, Pulsformung, Biophotonik


Laseroptik

Hier sehen Sie Darstellungen von optischen Aufbauten sowie Laserpulsen und -profilen.   


Neuere eigene Veröffentlichungen:

Temporally shaped vortex phase laser pulses for two-photon excited fluorescence, R. Gottschalk and A. Lindinger, Appl. Opt. 61, 10207 (2022).

Spatial and temporal laser pulse shaping for two color excitation, M. B. Hild, M. Safaeisadegh, and A. Lindinger, Optik 250, 168293 (2022).

Spatially and temporally polarization shaped laser pulses for two-photon excited fluorescence, M. B. Hild, R. Gottschalk, K. Heyne, and A. Lindinger, Eur. Phys. J. D 74, 206 (2020).

Fluorescence contrast improvement by polarization shaped laser pulses for autofluorescent biomolecules, B. Haas, M. B. Hild, A. Kussicke, A. Kurre, and A. Lindinger, Optik 207, 163777 (2020).

Spatial and temporal pulse shaping for lateral and depth resolved two-photon excited fluorescence contrast, A. Kussicke, M. Tegtmeier, F. Büchau, K. Heyne, and A. Lindinger, J. Phys. B: At. Mol. Opt. Phys. 53, 025401 (2020).

Contrast improvement of autofluorescent vitamins by using shaped laser pulses after a kagome fiber, S. Weber, J. Otto, and A. Lindinger, Laser Phys. 29, 035301 (2019).

Combined temporal and spatial laser pulse shaping for two-photon excited fluorescence contrast improvement, A. Kussicke, M. Tegtmeier, A. Patas, F. Büchau, K. Heyne, and A. Lindinger, Appl. Phys. B 124, 237 (2018).

Modifications of filament spectra by shaped octave-spanning laser pulses, A. Patas, M. Matthews, S. Hermelin, J. Gateau, J. Kasparian, J. P. Wolf, and A. Lindinger, Phys. Rev. A 98, 033804 (2018).

Contrast improvement by using tailored laser pulses to circumvent undesired excitations, I. Kumberg, A. Kussicke, A. Patas, and A. Lindinger, Optik 173, 53-59 (2018).

A stage-scanning two-photon microscope equipped with a temporal and a spatial pulse shaper: Enhance fluorescence signal by phase shaping, F. Büchau, A. Patas, Y. Yang, A. Lindinger, and K. Heyne, Review of Scientific Instruments 89, 123701 (2018).

Maximizing energy deposition by shaping few-cycle laser pulses, J. Gateau, A. Patas, M. Matthews, S. Hermelin, A. Lindinger, J. Kasparian, and J.-P. Wolf, J. Phys. B 51, 135402 (2018).

Amplification of intense light fields by nearly free electrons, M. Matthews, F. Morales, A. Patas, A. Lindinger, J. Gateau, N. Berti, S. Hermelin, J. Kasparian, M. Richter, T. Bredtmann, O. Smirnova, J.-P. Wolf, and M. Ivanov, Nature Physics 14, 695-700 (2018).

Atomically resolved phase transition of fullerene cations solvated in superfluid helium droplets, M. Kuhn, M. Renzler, J. Postler, S. Ralser, S. Spieler, M. Simpson, H. Linnartz, A. Tielens, J. Cami, A. Mauracher, Y. Wang, M. Alcamí, F. Martin, M. Beyer, R. Wester, A. Lindinger, and P. Scheier, Nature Communications 7, 13550 (2016).

Anionic hydrogen cluster ions as a new form of condensed hydrogen, M. Renzler, M. Kuhn, A. Mauracher, A. Lindinger, and P. Scheier, Phys. Rev. Lett. 117, 23001 (2016), also chosen as PRL Editors´ Suggestion.

Communication: Dopant-induced solvation of alkalis in liquid helium nanodroplets, M. Renzler, M. Daxner, L. Kranabetter, A. W. Hauser, W. E. Ernst, A. Lindinger, R. Zillich, P. Scheier, and A. M. Ellis, J. Chem. Phys. 145, 181101 (2016).

Fluorescence anisotropy excitation by polarization-shaped laser pulses after transmission through a kagome fiber, J. Otto, A. Patas, J. Althoff, and A. Lindinger, Appl. Phys. B 122, 1-7 (2016).

The adsorption of helium atoms on coronene cations, T. Kurzthaler, B. Rasul, M. Kuhn, A. Lindinger, P. Scheier, and A. Ellis, J. Chem. Phys. 145, 064305 (2016).

Selection of ionization paths of K2 on superfluid He-droplets by wavepacket interference, M. B. Hild, A. Dufour, G. Achazi, A. Patas, P. Scheier, and A. Lindinger, Chem. Phys. Lett. 658, 109-113 (2016).

Association of amino acids embedded in helium droplets detected by mass spectrometry, M. R. Lalanne, G. Achazi, S. Reichwald, and A. Lindinger, Eur. Phys. J. D 69, 280 (2015).

Phase sensitive pulse shaping for molecule selective three-photon excitation, G. Achazi, A. Patas, and A. Lindinger, Eur. Phys. J. D 68, 344 (2014).

Influence of nonlinear effects on the three-photon excitation of L-tryptophan in water using phase-shaped pulses, A. Patas, G. Achazi, C. Winta, and A. Lindinger, J. Opt. Soc. Am. B 31, 2208-2213 (2014) (also published in the Virtual Journal for Biomedical Optics, Vol. 9, Iss. 11, 2014). 

Photo-oxidation by laser pulse induced desorption of phthalocyanines, M. Holz, J. Wichmann, R. Mitric, L. Wöste, and A. Lindinger, Phys. Chem. Chem. Phys. 365-366, 89-92 (2014) special issue for Prof. Märk.

Polarization-shaped laser pulses for improved fluorescence anisotropy contrast, G. Achazi, N. Hermes, A. Patas, D. Tolksdorf, and A. Lindinger, Eur. Phys. J. D 67, 160 (2013).

Contrast optimization of two-photon processes after a microstructured hollow-core fiber demonstrated for dye molecules, A. Patas, G. Achazi, N. Hermes, M. Pawłowska, and A. Lindinger, Applied Physics B: Lasers and Optics 112, 579-586 (2013).

Selective excitation with shaped pulses transported through a fiber using reverse propagation, Monika Pawłowska, Georg Achazi, Nona Rahmat, Alexander Patas, and Albrecht Lindinger, Phys. Rev. A 86, 013834 (2012).

Parametrically shaped femtosecond pulses in the nonlinear regime obtained by reverse propagation in an optical fiber, Monika Pawłowska, Alexander Patas, Georg Achazi, and Albrecht Lindinger, Opt. Lett. 37, 2709-2711 (2012).

Shaped pulses transported through an optical fiber in the nonlinear regime for selective excitation of two-photon transitions, Monika Pawłowska, Alexander Patas, Georg Achazi, Nona Rahmat, Fabian Weise, and Albrecht Lindinger, J. Opt. Soc. Am. B 29, 833-840 (2012).

Modification of the secondary structure of angiotensin II by substitution of hydrogen with Cs cations: an experimental and theoretical study, J. Wichmann, R. Mitric, C. Weise, M. Holz, and A. Lindinger, Phys. Chem. Chem. Phys. 14, 9301-9305 (2012) special issue for Prof. Wöste.

Parametrically polarization shaped pulses guided via a hollow core photonic crystal fiber for coherent control, Fabian Weise, Georg Achazi, and Albrecht Lindinger, Phys. Chem. Chem. Phys. 13, 8621-8626 (2011) (selected as cover figure for volume 13, number 19).

Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fiber, Fabian Weise, Monika Pawłowska, Georg Achazi, and Albrecht Lindinger, J. Opt. 13, 075301 (2011).

Systematic variation of parametrically shaped sub-pulse sequences after transmission through a photonic crystal fiber, Fabian Weise, Georg Achazi, Monika Pawłowska, and Albrecht Lindinger, Special Issue on Optical Pulse Shaping, Arbitrary Waveform Generation, and Pulse Characterization in Opt. Com. 284, 3759-3771 (2011).

Reconstruction of polarization shaped laser pulses after a hollow core fiber using back-reflection, Georg Achazi, Alexander Patas, Fabian Weise, Monika Pawłowska, and Albrecht Lindinger, Appl. Opt. 50, 915-923 (2011).

Parametrically phase-, amplitude-, and polarization-shaped femtosecond laser pulses guided via a step-index fiber, Fabian Weise, Monika Pawłowska, Georg Achazi, and Albrecht Lindinger, J. Opt. Soc. Am. B 28, 406-415 (2011).

Parametrically polarization-shaped pulses using a hollow-core photonic crystal fiber, Fabian Weise, Georg Achazi, and Albrecht Lindinger, Phys. Rev A 82, 053827 (2010).

Full parametric pulse shaping in phase, amplitude, and polarization using an effective four array modulator, F. Weise and A. Lindinger, Appl. Phys. B 101, 79-91 (2010).